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Larry Reinhart joined the Jet Propulsion Laboratory in 1982 and shortly after, in 1985, become
involved in space nuclear power system launch approval activities for the Galileo and Ulysses
missions to be launched on the Shuttle. He currently manages integration of launch vehicle
databooks which support space nuclear power system launch approval for future missions to
Mars and the outer planets, and development of associated accident scenarios and probabilities,
accident environments and environment testing, and reentry/breakup analyses. He was the
recipient of the Exceptional Achievement Award from NASA for his contribution to the Cassini
nuclear safety launch approval effort. He received his PhD in Mechanical Engineering from the
University of Massachusetts, Amherst.

Abstract

This paper provides an overview of the U. S. space nuclear power system launch approval
process as defined by the two separate requirements of the National Environmental Policy Act
(NEPA) and Presidential Directive/National Security Council Memorandum No. 25 (PD/NSC -
25). The general content of the launch vehicle databook developed by NASA which supports this
approval process is described. Finally, the evolution in the development of a key component of
this data, the definition of accident scenarios and their probability of occurrence, is traced from
the simple analyses/engineering judgment used for the Galileo mission to the probabilistic risk
assessment methods currently employed.
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JPL ’ Content

* Space Nuclear Power System (NPS) Launch
Approval Requirements/Processes
— National Environmental Policy Act (NEPA)

— Presidential Directive/National Security Council
Memorandum No. 25 (PD/NSC - 25)

 Launch Vehicle Databook

— QOverview/Focus

— Historical Development of Accident Scenarios and
Probabilities

— The Current Probabilistic Risk Assessment Methodology



JPL  Space NPS Launch Approval

* Required for Missions Using Space Nuclear Power
System (NPS), e.g., Radioisotope Thermoelectric

Generators (RTGs) and Radioisotope Heater Units
(RHUs)

* Addresses Two Separate Requirements/Processes

— National Environmental Policy Act (NEPA) — Ensures
consideration of potential environmental impacts of
proposed actions and reasonable alternatives

— Presidential Directive/National Security Council
Memorandum No. 25 (PD/NSC-25) — Ensures informed
decision-making at the Presidential level before
launching NPS
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JPL NEPA

e Completed Early in the Development Phase

* Focuses on Proposed Baseline Plan and Reasonable
Alternatives

» Radiological Safety Assessment Based on Best
Available Information, e.g., Accident Scenarios,
Probabilities, and Environments

* Decision to Proceed Made by NASA Associate
Admuinistrator for Space Science
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NEPA Process

Requirements:
EIS
Databook
v
EIS- EIS-
Supporting > Supporting
Alternative Safety
Studies Assessment
e
A 4
Public Notice
of Intentto | | Draft EIS
Prepare a
Draft EIS

» Complete an Environmental Impact
Statement (EIS) early in the Program (e.g.,
prior to CDR)

* Objectively assess potential environmental
impacts of the “proposed action” and
alternatives”

 Use best-available information

* Collect and respond to comments from the
public and state and federal agencies

* Repeat process if “significant new
mformation” becomes available

Record
—» Final EIS
DeC|S|on




JPL PD/NSC — 25

* Completed Prior to Launch
* Focuses on Baseline Plan
* Considers Contingency Launches

» Radiological Safety Assessment Based on Final
Launch Vehicle Data

* Nuclear Safety Launch Approval Decision Made by
White House Office of Science & Technology
Policy (OSTP) Director, or the President

* Normal Range Safety Launch Approval Required
After Ensuring Nuclear Safety



JPL PD/NSC — 25 Process

Requirements: « Estimate the Radiological Risk - Safety Analysis Report

(SAR), DoE

* Conduct Review of SAR — Safety Evaluation Report (SER),
Ad Hoc Interagency Nuclear Safety Review Panel (INSRP)

* Request Nuclear Safety Launch Approval through Director
of the President’s Office of Science and Technology Policy
(OSTP) Supported by DoD and EPA Concurrences and DoE

Validation of Risk, NASA

Accident Environment
Definition Testing
Program
* Agency
Nuclear Review
SAR Safety Test : & Launch
Databook Program Safety Evaluation Report Request
Safety Analysis Report (SAR) p Contingency
Planning
3
Spacecraft Ea'fth Nuclear Safety
Reentry/Break Swingby Plan Launch Approval
up Analysis (If required) Decision



JPL [Launch Vehicle Databook

e Overview

— Documents much of the data required to conduct the
nuclear safety analyses performed by DoE

— Prepared for NASA with inputs from:

* Launch Vehicle Manufacturer
« JPL

 JPL Contractors

e Focus

— Description of the launch vehicle, destruct system(s),
command destruct process, and launch complex

— Definition of accident scenarios and their probability of
occurrence

— Quantification of accident environments which result
upon release of stored potential and chemical energy
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JPIL, Accident Scenarios and Probabilities

* Objective

— Define a set of accident scenarios that represent the
overall mission risk

— Quantify the accident scenario probabilities

11



JPL Accident Scenarios and Probabilities

 Historical Development

— Galileo/Ulysses Missions Launched on Shuttle in
1989/1990

* Descriptive scenarios developed for prelaunch through escape,
including aborts

* NASA JSC provided initiating accident scenario probabilities
based on historical failures and engineering judgment

* NASA Code Q contracted with PRC to develop initiating

accident scenario probabilities using probabilistic risk assessment
(PRA) techniques. NASA adopted these for use in the SAR.

12



JPI., Accident Scenarios and Probabilities

 Historical Development (cont.)

— (Cassini Mission Launched on Titan IV 1in 1997

* NASA LeRC, with the support of NASA Code Q, made the
decision to implement PRA methodology to define databook
accidents and probabilities.

* PRA methodology was jointly defined by NASA LeRC and
Aerospace Corporation
— Current Missions

 NASA KSC has requested that LV databooks use PRA methods
for defining accidents scenarios/probabilities, with the level of
detail consistent with DoE requirements

13



JPL PRA Methodology

Level-to- MLD Levels
level
Mappmg Representative Accident

Scenarios (RAS)
Define jointly by NASA and

Event Sequence DoE

Diagrams (ESDs)
Accident Outcome Conditions
(AOCs)
A Vehicle-Level Accident
Event Sequence End-points
Diagrams (ESDs)
Accident Initial Conditions
A (AICs)
Functional Vghicle-Level Accident Start-
Organization points
+
Bayesian Update

Basic Initiating Events (BIEs)
e.g., Component-Level Failures
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JPL Basic Initiating Events (BIEs)

The basic component level failures which initiate all accident sequences.
BIE probabilities derived from Launch Vehicle FMEA data.

System Reliability Failure Probability
Vehicle 0.xxxx 0.yyyy
First Stage 0.xxxx 0.yyyy
Propulsion 0.xxxx 0.yyyy
Main Engine 0.xxxx 0.yyyy
Liquid Oxygen 0.xxxx 0.yyyy
Fuel 0.xxxx 0.yyyy
Ullage 0.xxxx 0.yyyy
Graphite Epoxy Motors (GEMs) 0.xxxx 0.yyyy
(Four GEM Basis)
GEM (Single GEM Basis) 0.xxxx 0.yyyy
Ignition 0.xxxx 0.yyyy
Case 0.xxxx 0.yyyy
Propellant/Case Bond 0.xxxx 0.yyyy
Internal Insulator 0.xxxx 0.yyyy
Attachment to Nozzle 0.xxxx 0.yyyy
Case/Vehicle Attachment 0.xxxx 0.yyyy
Ordnance 0.xxxx 0.yyyy
GEM Separation (Four GEM Basis) 0.xxxx 0.yyyy
(Single GEM Basis) 0.xxXx 0.yyyy
Stage 1/ 2 Separation 0.xxxx 0.yyyy
Avionics 0.xxxx 0.yyyy
Mechanical 0.xxxx 0.yyyy
Hydraulics 0.xxxx 0.yyyy
Stage 1 /2 Separation Springs 0.xxxx 0.yyyy
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JPL. Accident Initial Conditions (AICs)

» The first system-level manifestation of a LV or SV failure that may
lead to a catastrophic accident or mission failure.

« The AICs are organized in a Master Logic Diagram (MLD) which has
been deductively derived.
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JPL. Accident Outcome Conditions (AOCs)

« A Launch Vehicle or Space Vehicle event or condition where the NPS
first experiences a potentially damaging environment

« The AOCs are organized in a Master Logic Diagram (MLD) which has
been deductively derived.
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JPL. Event Sequence Diagrams (ESDs)

* Inductively-derived (e.g., cause to effect) logical
representations of accident sequences.

* Branch point probabilities are determined by an expert
elicitation process or analysis.
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